arXiv:2512.16954v1 Announce Type: cross
Abstract: Generating long, cohesive video stories with consistent characters is a significant challenge for current text-to-video AI. We introduce a method that approaches video generation in a filmmaker-like manner. Instead of creating a video in one step, our proposed pipeline first uses a large language model to generate a detailed production script. This script guides a text-to-image model in creating consistent visuals for each character, which then serve as anchors for a video generation model to synthesize each scene individually. Our baseline comparisons validate the necessity of this multi-stage decomposition; specifically, we observe that removing the visual anchoring mechanism results in a catastrophic drop in character consistency scores (from 7.99 to 0.55), confirming that visual priors are essential for identity preservation. Furthermore, we analyze cultural disparities in current models, revealing distinct biases in subject consistency and dynamic degree between Indian vs Western-themed generations.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core



