arXiv:2512.17462v1 Announce Type: cross
Abstract: Marketing and product personalisation provide a prominent and visible use-case for the application of Information Retrieval methods across several business domains. Recently, agentic approaches to these problems have been gaining traction. This work evaluates the behavioural and retention effects of agentic personalisation on a financial service application’s customer communication system during a 2025 national tax filing period. Through a two month-long randomised controlled trial, we compare an agentic messaging approach against a business-as-usual (BAU) rule-based campaign system, focusing on two primary outcomes: unsubscribe behaviour and conversion timing. Empirical results show that agent-led messaging reduced unsubscribe events by 21% ($pm 0.01$) relative to BAU and increased early filing behaviour in the weeks preceding the national deadline. These findings demonstrate how adaptive, user-level decision-making systems can modulate engagement intensity whilst improving long-term retention indicators.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core




