arXiv:2512.17733v1 Announce Type: cross
Abstract: Beyond user-item modeling, item-to-item relationships are increasingly used to enhance recommendation. However, common methods largely rely on co-occurrence, making them prone to item popularity bias and user attributes, which degrades embedding quality and performance. Meanwhile, although diversity is acknowledged as a key aspect of recommendation quality, existing research offers limited attention to it, with a notable lack of causal perspectives and theoretical grounding. To address these challenges, we propose Cadence: Diversity Recommendation via Causal Deconfounding of Co-purchase Relations and Counterfactual Exposure – a plug-and-play framework built upon LightGCN as the backbone, primarily designed to enhance recommendation diversity while preserving accuracy. First, we compute the Unbiased Asymmetric Co-purchase Relationship (UACR) between items – excluding item popularity and user attributes – to construct a deconfounded directed item graph, with an aggregation mechanism to refine embeddings. Second, we leverage UACR to identify diverse categories of items that exhibit strong causal relevance to a user’s interacted items but have not yet been engaged with. We then simulate their behavior under high-exposure scenarios, thereby significantly enhancing recommendation diversity while preserving relevance. Extensive experiments on real-world datasets demonstrate that our method consistently outperforms state-of-the-art diversity models in both diversity and accuracy, and further validates its effectiveness, transferability, and efficiency over baselines.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:




