arXiv:2308.02815v2 Announce Type: replace-cross
Abstract: As global population aging intensifies, there is growing interest in the study of biological age. Bones have long been used to evaluate biological age, and the decline in bone density with age is a well-recognized phenomenon in adults. However, the pattern of this decline remains controversial, making it difficult to serve as a reliable indicator of the aging process. Here we present a novel AI-driven statistical method to assess the bone density, and a discovery that the bone mass distribution in trabecular bone of vertebrae follows a non-Gaussian, unimodal, and skewed distribution in CT images. The statistical mode of the distribution is defined as the measure of bone mass, which is a groundbreaking assessment of bone density, named Trabecular Bone Density (TBD). The dataset of CT images are collected from 1,719 patients who underwent PET/CT scans in three hospitals, in which a subset of the dataset is used for AI model training and generalization. Based upon the cases, we demonstrate that the pattern of bone density declining with aging exhibits a consistent trend of exponential decline across sexes and age groups using TBD assessment. The developed AI-driven statistical method blazes a trail in the field of AI for reliable quantitative computation and AI for medicine. The findings suggest that human aging is a gradual process, with the rate of decline slowing progressively over time, which will provide a valuable basis for scientific prediction of life expectancy.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:


