arXiv:2512.19107v1 Announce Type: new
Abstract: Identifying user intent from mobile UI operation trajectories is critical for advancing UI understanding and enabling task automation agents. While Multimodal Large Language Models (MLLMs) excel at video understanding tasks, their real-time mobile deployment is constrained by heavy computational costs and inefficient redundant frame processing. To address these issues, we propose the FC-MIR framework: leveraging keyframe sampling and adaptive concatenation, it cuts visual redundancy to boost inference efficiency, while integrating state-of-the-art closed-source MLLMs or fine-tuned models (e.g., Qwen3-VL) for trajectory summarization and intent prediction. We further expand task scope to explore generating post-prediction operations and search suggestions, and introduce a fine-grained metric to evaluate the practical utility of summaries, predictions, and suggestions. For rigorous assessment, we construct a UI trajectory dataset covering scenarios from UI-Agents (Agent-I) and real user interactions (Person-I). Experimental results show our compression method retains performance at 50%-60% compression rates; both closed-source and fine-tuned MLLMs demonstrate strong intent summarization, supporting potential lightweight on-device deployment. However, MLLMs still struggle with useful and “surprising” suggestions, leaving room for improvement. Finally, we deploy the framework in a real-world setting, integrating UI perception and UI-Agent proxies to lay a foundation for future progress in this field.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:



