• Home
  • Uncategorized
  • KnowVal: A Knowledge-Augmented and Value-Guided Autonomous Driving System

KnowVal: A Knowledge-Augmented and Value-Guided Autonomous Driving System

arXiv:2512.20299v1 Announce Type: cross
Abstract: Visual-language reasoning, driving knowledge, and value alignment are essential for advanced autonomous driving systems. However, existing approaches largely rely on data-driven learning, making it difficult to capture the complex logic underlying decision-making through imitation or limited reinforcement rewards. To address this, we propose KnowVal, a new autonomous driving system that enables visual-language reasoning through the synergistic integration of open-world perception and knowledge retrieval. Specifically, we construct a comprehensive driving knowledge graph that encodes traffic laws, defensive driving principles, and ethical norms, complemented by an efficient LLM-based retrieval mechanism tailored for driving scenarios. Furthermore, we develop a human-preference dataset and train a Value Model to guide interpretable, value-aligned trajectory assessment. Experimental results show that our method substantially improves planning performance while remaining compatible with existing architectures. Notably, KnowVal achieves the lowest collision rate on nuScenes and state-of-the-art results on Bench2Drive.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844