arXiv:2512.20299v1 Announce Type: cross
Abstract: Visual-language reasoning, driving knowledge, and value alignment are essential for advanced autonomous driving systems. However, existing approaches largely rely on data-driven learning, making it difficult to capture the complex logic underlying decision-making through imitation or limited reinforcement rewards. To address this, we propose KnowVal, a new autonomous driving system that enables visual-language reasoning through the synergistic integration of open-world perception and knowledge retrieval. Specifically, we construct a comprehensive driving knowledge graph that encodes traffic laws, defensive driving principles, and ethical norms, complemented by an efficient LLM-based retrieval mechanism tailored for driving scenarios. Furthermore, we develop a human-preference dataset and train a Value Model to guide interpretable, value-aligned trajectory assessment. Experimental results show that our method substantially improves planning performance while remaining compatible with existing architectures. Notably, KnowVal achieves the lowest collision rate on nuScenes and state-of-the-art results on Bench2Drive.
Learning Evolving Latent Strategies for Multi-Agent Language Systems without Model Fine-Tuning
arXiv:2512.20629v1 Announce Type: cross Abstract: This study proposes a multi-agent language framework that enables continual strategy evolution without fine-tuning the language model’s parameters. The core




