• Home
  • Uncategorized
  • Interpolative Decoding: Exploring the Spectrum of Personality Traits in LLMs

Interpolative Decoding: Exploring the Spectrum of Personality Traits in LLMs

arXiv:2512.19937v1 Announce Type: new
Abstract: Recent research has explored using very large language models (LLMs) as proxies for humans in tasks such as simulation, surveys, and studies. While LLMs do not possess a human psychology, they often can emulate human behaviors with sufficiently high fidelity to drive simulations to test human behavioral hypotheses, exhibiting more nuance and range than the rule-based agents often employed in behavioral economics. One key area of interest is the effect of personality on decision making, but the requirement that a prompt must be created for every tested personality profile introduces experimental overhead and degrades replicability. To address this issue, we leverage interpolative decoding, representing each dimension of personality as a pair of opposed prompts and employing an interpolation parameter to simulate behavior along the dimension. We show that interpolative decoding reliably modulates scores along each of the Big Five dimensions. We then show how interpolative decoding causes LLMs to mimic human decision-making behavior in economic games, replicating results from human psychological research. Finally, we present preliminary results of our efforts to “twin” individual human players in a collaborative game through systematic search for points in interpolation space that cause the system to replicate actions taken by the human subject.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844