• Home
  • AI/ML & Advanced Analytics
  • Deep Reinforcement Learning Optimization for Uncertain Nonlinear Systems via Event-Triggered Robust Adaptive Dynamic Programming

Deep Reinforcement Learning Optimization for Uncertain Nonlinear Systems via Event-Triggered Robust Adaptive Dynamic Programming

arXiv:2512.15735v3 Announce Type: replace-cross
Abstract: This work proposes a unified control architecture that couples a Reinforcement Learning (RL)-driven controller with a disturbance-rejection Extended State Observer (ESO), complemented by an Event-Triggered Mechanism (ETM) to limit unnecessary computations. The ESO is utilized to estimate the system states and the lumped disturbance in real time, forming the foundation for effective disturbance compensation. To obtain near-optimal behavior without an accurate system description, a value-iteration-based Adaptive Dynamic Programming (ADP) method is adopted for policy approximation. The inclusion of the ETM ensures that parameter updates of the learning module are executed only when the state deviation surpasses a predefined bound, thereby preventing excessive learning activity and substantially reducing computational load. A Lyapunov-oriented analysis is used to characterize the stability properties of the resulting closed-loop system. Numerical experiments further confirm that the developed approach maintains strong control performance and disturbance tolerance, while achieving a significant reduction in sampling and processing effort compared with standard time-triggered ADP schemes.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844