arXiv:2509.18218v4 Announce Type: replace
Abstract: We posit that persisting and transforming similarity relations form the structural basis of any comprehensible dynamic system. This paper introduces Similarity Field Theory, a mathematical framework that formalizes the principles governing similarity values among entities and their evolution. We define: (1) a similarity field $S: U times U to [0,1]$ over a universe of entities $U$, satisfying reflexivity $S(E,E)=1$ and treated as a directed relational field (asymmetry and non-transitivity are allowed); (2) the evolution of a system through a sequence $Z_p=(X_p,S^(p))$ indexed by $p=0,1,2,ldots$; (3) concepts $K$ as entities that induce fibers $F_alpha(K)=Ein U mid S(E,K)ge alpha$, i.e., superlevel sets of the unary map $S_K(E):=S(E,K)$; and (4) a generative operator $G$ that produces new entities. Within this framework, we formalize a generative definition of intelligence: an operator $G$ is intelligent with respect to a concept $K$ if, given a system containing entities belonging to the fiber of $K$, it generates new entities that also belong to that fiber. Similarity Field Theory thus offers a foundational language for characterizing, comparing, and constructing intelligent systems. At a high level, this framework reframes intelligence and interpretability as geometric problems on similarity fields–preserving and composing level-set fibers–rather than purely statistical ones. We prove two theorems: (i) asymmetry blocks mutual inclusion; and (ii) stability implies either an anchor coordinate or asymptotic confinement to the target level (up to arbitrarily small tolerance). Together, these results constrain similarity-field evolution and motivate an interpretive lens that can be applied to large language models.
AI Wrapped: The 14 AI terms you couldn’t avoid in 2025
If the past 12 months have taught us anything, it’s that the AI hype train is showing no signs of slowing. It’s hard to believe



