arXiv:2512.20959v1 Announce Type: cross
Abstract: Data science plays a critical role in transforming complex data into actionable insights across numerous domains. Recent developments in large language models (LLMs) have significantly automated data science workflows, but a fundamental question persists: Can these agentic AI systems truly match the performance of human data scientists who routinely leverage domain-specific knowledge? We explore this question by designing a prediction task where a crucial latent variable is hidden in relevant image data instead of tabular features. As a result, agentic AI that generates generic codes for modeling tabular data cannot perform well, while human experts could identify the important hidden variable using domain knowledge. We demonstrate this idea with a synthetic dataset for property insurance. Our experiments show that agentic AI that relies on generic analytics workflow falls short of methods that use domain-specific insights. This highlights a key limitation of the current agentic AI for data science and underscores the need for future research to develop agentic AI systems that can better recognize and incorporate domain knowledge.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:




