arXiv:2512.20968v1 Announce Type: cross
Abstract: Distributed attention is a fundamental problem for scaling context window for Large Language Models (LLMs). The state-of-the-art method, Ring-Attention, suffers from scalability limitations due to its excessive communication traffic. This paper proposes a new distributed attention algorithm, Mesh-Attention, by rethinking the design space of distributed attention with a new matrix-based model. Our method assigns a two-dimensional tile — rather than one-dimensional row or column — of computation blocks to each GPU to achieve higher efficiency through lower communication-computation (CommCom) ratio. The general approach covers Ring-Attention as a special case, and allows the tuning of CommCom ratio with different tile shapes. Importantly, we propose a greedy algorithm that can efficiently search the scheduling space within the tile with restrictions that ensure efficient communication among GPUs. The theoretical analysis shows that Mesh-Attention leads to a much lower communication complexity and exhibits good scalability comparing to other current algorithms.
Our extensive experiment results show that Mesh-Attention can achieve up to 3.4x speedup (2.9x on average) and reduce the communication volume by up to 85.4% (79.0% on average) on 256 GPUs. Our scalability results further demonstrate that Mesh-Attention sustains superior performance as the system scales, substantially reducing overhead in large-scale deployments. The results convincingly confirm the advantage of Mesh-Attention.
Just-In-Time Adaptive Interventions for Weight Management Among Adults With Excess Body Weight: Scoping Review
Background: Just-in-time adaptive interventions (JITAIs) use real-time monitoring to deliver personalized support at optimal moments, demonstrating potential for improving lifestyle behaviors in weight management. Objective:



