• Home
  • AI/ML & Advanced Analytics
  • QKCV Attention: Enhancing Time Series Forecasting with Static Categorical Embeddings for Both Lightweight and Pre-trained Foundation Models

QKCV Attention: Enhancing Time Series Forecasting with Static Categorical Embeddings for Both Lightweight and Pre-trained Foundation Models

arXiv:2510.20222v1 Announce Type: cross
Abstract: In real-world time series forecasting tasks, category information plays a pivotal role in capturing inherent data patterns. This paper introduces QKCV (Query-Key-Category-Value) attention, an extension of the traditional QKV framework that incorporates a static categorical embedding C to emphasize category-specific information. As a versatile plug-in module, QKCV enhances the forecasting accuracy of attention-based models (e.g., Vanilla Transformer, Informer, PatchTST, TFT) across diverse real-world datasets. Furthermore, QKCV demonstrates remarkable adaptability in fine-tuning univariate time series foundation model by solely updating the static embedding C while preserving pretrained weights, thereby reducing computational overhead and achieving superior fine-tuning performance.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844