FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

L$^2$M: Mutual Information Scaling Law for Long-Context Language Modeling

arXiv:2503.04725v2 Announce Type: replace-cross
Abstract: We present a universal theoretical framework for understanding long-context language modeling based on a bipartite mutual information scaling law that we rigorously verify in natural language. We demonstrate that bipartite mutual information captures multi-token interactions distinct from and scaling independently of conventional two-point mutual information, and show that this provides a more complete characterization of the dependencies needed for accurately modeling long sequences. Leveraging this scaling law, we formulate the Long-context Language Modeling (L$^2$M) condition, which lower bounds the necessary scaling of a model’s history state — the latent variables responsible for storing past information — for effective long-context modeling. We validate the framework and its predictions on transformer and state-space models. Our work provides a principled foundation to understand long-context modeling and to design more efficient architectures with stronger long-context capabilities, with potential applications beyond natural language.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844