FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

This EEG Looks Like These EEGs: Interpretable Interictal Epileptiform Discharge Detection With ProtoEEG-kNN

arXiv:2510.20846v1 Announce Type: new
Abstract: The presence of interictal epileptiform discharges (IEDs) in electroencephalogram (EEG) recordings is a critical biomarker of epilepsy. Even trained neurologists find detecting IEDs difficult, leading many practitioners to turn to machine learning for help. While existing machine learning algorithms can achieve strong accuracy on this task, most models are uninterpretable and cannot justify their conclusions. Absent the ability to understand model reasoning, doctors cannot leverage their expertise to identify incorrect model predictions and intervene accordingly. To improve the human-model interaction, we introduce ProtoEEG-kNN, an inherently interpretable model that follows a simple case-based reasoning process. ProtoEEG-kNN reasons by comparing an EEG to similar EEGs from the training set and visually demonstrates its reasoning both in terms of IED morphology (shape) and spatial distribution (location). We show that ProtoEEG-kNN can achieve state-of-the-art accuracy in IED detection while providing explanations that experts prefer over existing approaches.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844