arXiv:2510.21027v1 Announce Type: new
Abstract: Harmonizing medication data across Electronic Health Record (EHR) systems is a persistent barrier to monitoring medications for opioid use disorder (MOUD). In heterogeneous EHR systems, key prescription attributes are scattered across differently formatted fields and freetext notes. We present a practical framework that customizes open source large language models (LLMs), including Llama, Qwen, Gemma, and MedGemma, to extract a unified set of MOUD prescription attributes (prescription date, drug name, duration, total quantity, daily quantity, and refills) from heterogeneous, site specific data and compute a standardized metric of medication coverage, emphMOUD days, per patient. Our pipeline processes records directly in a fixed JSON schema, followed by lightweight normalization and cross-field consistency checks. We evaluate the system on prescription level EHR data from five clinics in a national OUD study (25,605 records from 1,257 patients), using a previously annotated benchmark of 10,369 records (776 patients) as the ground truth. Performance is reported as coverage (share of records with a valid, matchable output) and record-level exact-match accuracy. Larger models perform best overall: Qwen2.5-32B achieves textbf93.4% coverage with textbf93.0% exact-match accuracy across clinics, and MedGemma-27B attains textbf93.1%/textbf92.2%. A brief error review highlights three common issues and fixes: imputing missing dosage fields using within-drug norms, handling monthly/weekly injectables (e.g., Vivitrol) by setting duration from the documented schedule, and adding unit checks to prevent mass units (e.g., “250 g”) from being misread as daily counts. By removing brittle, site-specific ETL and supporting local, privacy-preserving deployment, this approach enables consistent cross-site analyses of MOUD exposure, adherence, and retention in real-world settings.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We


