Weak-to-Strong Generalization under Distribution Shifts

arXiv:2510.21332v1 Announce Type: cross
Abstract: As future superhuman models become increasingly complex, accurately supervising their behavior may exceed human capabilities. Recent works have demonstrated that in such scenarios, weak models can effectively supervise strong models, a phenomenon known as weak-to-strong generalization. However, we find that naive weak-to-strong generalization fails under distribution shifts, often leading to worse performance of the strong model than its weak supervisors. To address this, we propose RAVEN, a robust weak-to-strong generalization framework that dynamically learns the optimal combinations of weak models in addition to parameters of the strong model. We demonstrate the effectiveness of RAVEN on image classification, text classification, and preference alignment tasks. RAVEN outperforms alternative baselines by over 30% on out-of-distribution tasks while matching or surpassing existing methods on in-distribution tasks. Moreover, our results show that RAVEN assigns higher weights to more accurate weak models, demonstrating its ability to automatically identify trustworthy supervision.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844