arXiv:2510.22219v1 Announce Type: cross
Abstract: We measure LLMs’ output error at pairwise text comparison, noting the probability of error in their preferences. Our method does not rely on the ground truth and supports two scenarios: (i) uniform error rate regardless of the order of comparison, estimated with two comparisons for each text pair with either text placed first; (ii) binary positional bias assuming distinct error rates for the two orders of comparison, estimated with repeated comparisons between the texts. The Copeland counting constructs a ranking over the compared texts from pairwise preferences; the ranking reveals the poor scalability of LLM-based pairwise comparison and helps yield the estimates for LLMs’ error rates. We apply the method to six LLMs (ChatGPT, Claude, DeepSeek, Gemini, Grok, Qwen) with five types of text input and obtain consistent estimates of LLMs’ error. In general, the measured two positional bias terms are similar, close to the uniform error. Considering both the error rates and the robustness to the variation of prompts, Claude obtained the most desirable performance in this experiment. Our model outperforms the biased Bradley-Terry model and the commutativity score in indicating LLMs’ error at this task.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We


