arXiv:2510.24012v1 Announce Type: cross
Abstract: Text-to-image models have recently made significant advances in generating realistic and semantically coherent images, driven by advanced diffusion models and large-scale web-crawled datasets. However, these datasets often contain inappropriate or biased content, raising concerns about the generation of harmful outputs when provided with malicious text prompts. We propose Safe Text embedding Guidance (STG), a training-free approach to improve the safety of diffusion models by guiding the text embeddings during sampling. STG adjusts the text embeddings based on a safety function evaluated on the expected final denoised image, allowing the model to generate safer outputs without additional training. Theoretically, we show that STG aligns the underlying model distribution with safety constraints, thereby achieving safer outputs while minimally affecting generation quality. Experiments on various safety scenarios, including nudity, violence, and artist-style removal, show that STG consistently outperforms both training-based and training-free baselines in removing unsafe content while preserving the core semantic intent of input prompts. Our code is available at https://github.com/aailab-kaist/STG.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and

