ResNet: Enabling Deep Convolutional Neural Networks through Residual Learning

arXiv:2510.24036v1 Announce Type: cross
Abstract: Convolutional Neural Networks (CNNs) has revolutionized computer vision, but training very deep networks has been challenging due to the vanishing gradient problem. This paper explores Residual Networks (ResNet), introduced by He et al. (2015), which overcomes this limitation by using skip connections. ResNet enables the training of networks with hundreds of layers by allowing gradients to flow directly through shortcut connections that bypass intermediate layers. In our implementation on the CIFAR-10 dataset, ResNet-18 achieves 89.9% accuracy compared to 84.1% for a traditional deep CNN of similar depth, while also converging faster and training more stably.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844