Diffusion Adaptive Text Embedding for Text-to-Image Diffusion Models

arXiv:2510.23974v1 Announce Type: cross
Abstract: Text-to-image diffusion models rely on text embeddings from a pre-trained text encoder, but these embeddings remain fixed across all diffusion timesteps, limiting their adaptability to the generative process. We propose Diffusion Adaptive Text Embedding (DATE), which dynamically updates text embeddings at each diffusion timestep based on intermediate perturbed data. We formulate an optimization problem and derive an update rule that refines the text embeddings at each sampling step to improve alignment and preference between the mean predicted image and the text. This allows DATE to dynamically adapts the text conditions to the reverse-diffused images throughout diffusion sampling without requiring additional model training. Through theoretical analysis and empirical results, we show that DATE maintains the generative capability of the model while providing superior text-image alignment over fixed text embeddings across various tasks, including multi-concept generation and text-guided image editing. Our code is available at https://github.com/aailab-kaist/DATE.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844