arXiv:2510.25908v1 Announce Type: new
Abstract: Large language models (LLMs) have demonstrated transformative potential in scientific research, yet their deployment in high-stakes contexts raises significant trustworthiness concerns. Here, we introduce SciTrust 2.0, a comprehensive framework for evaluating LLM trustworthiness in scientific applications across four dimensions: truthfulness, adversarial robustness, scientific safety, and scientific ethics. Our framework incorporates novel, open-ended truthfulness benchmarks developed through a verified reflection-tuning pipeline and expert validation, alongside a novel ethics benchmark for scientific research contexts covering eight subcategories including dual-use research and bias. We evaluated seven prominent LLMs, including four science-specialized models and three general-purpose industry models, using multiple evaluation metrics including accuracy, semantic similarity measures, and LLM-based scoring. General-purpose industry models overall outperformed science-specialized models across each trustworthiness dimension, with GPT-o4-mini demonstrating superior performance in truthfulness assessments and adversarial robustness. Science-specialized models showed significant deficiencies in logical and ethical reasoning capabilities, along with concerning vulnerabilities in safety evaluations, particularly in high-risk domains such as biosecurity and chemical weapons. By open-sourcing our framework, we provide a foundation for developing more trustworthy AI systems and advancing research on model safety and ethics in scientific contexts.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and


