arXiv:2510.25997v1 Announce Type: new
Abstract: Natural-language-to-SQL (NL-to-SQL) systems hold promise for democratizing access to structured data, allowing users to query databases without learning SQL. Yet existing systems struggle with realistic spatio-temporal queries, where success requires aligning vague user phrasing with schema-specific categories, handling temporal reasoning, and choosing appropriate outputs. We present an agentic pipeline that extends a naive text-to-SQL baseline (llama-3-sqlcoder-8b) with orchestration by a Mistral-based ReAct agent. The agent can plan, decompose, and adapt queries through schema inspection, SQL generation, execution, and visualization tools. We evaluate on 35 natural-language queries over the NYC and Tokyo check-in dataset, covering spatial, temporal, and multi-dataset reasoning. The agent achieves substantially higher accuracy than the naive baseline 91.4% vs. 28.6% and enhances usability through maps, plots, and structured natural-language summaries. Crucially, our design enables more natural human-database interaction, supporting users who lack SQL expertise, detailed schema knowledge, or prompting skill. We conclude that agentic orchestration, rather than stronger SQL generators alone, is a promising foundation for interactive geospatial assistants.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We


