Dual Mixture-of-Experts Framework for Discrete-Time Survival Analysis

arXiv:2510.26014v1 Announce Type: cross
Abstract: Survival analysis is a task to model the time until an event of interest occurs, widely used in clinical and biomedical research. A key challenge is to model patient heterogeneity while also adapting risk predictions to both individual characteristics and temporal dynamics. We propose a dual mixture-of-experts (MoE) framework for discrete-time survival analysis. Our approach combines a feature-encoder MoE for subgroup-aware representation learning with a hazard MoE that leverages patient features and time embeddings to capture temporal dynamics. This dual-MoE design flexibly integrates with existing deep learning based survival pipelines. On METABRIC and GBSG breast cancer datasets, our method consistently improves performance, boosting the time-dependent C-index up to 0.04 on the test sets, and yields further gains when incorporated into the Consurv framework.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844