arXiv:2508.15030v3 Announce Type: replace
Abstract: We propose Collab-REC, a multi-agent framework designed to counteract popularity bias and enhance diversity in tourism recommendations. In our setting, three LLM-based agents — Personalization, Popularity, and Sustainability generate city suggestions from complementary perspectives. A non-LLM moderator then merges and refines these proposals via multi-round negotiation, ensuring each agent’s viewpoint is incorporated while penalizing spurious or repeated responses. Experiments on European city queries show that Collab-REC improves diversity and overall relevance compared to a single-agent baseline, surfacing lesser-visited locales that often remain overlooked. This balanced, context-aware approach addresses over-tourism and better aligns with constraints provided by the user, highlighting the promise of multi-stakeholder collaboration in LLM-driven recommender systems.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We

