Fuzzy, Symbolic, and Contextual: Enhancing LLM Instruction via Cognitive Scaffolding

arXiv:2508.21204v2 Announce Type: replace
Abstract: We study how prompt-level inductive biases influence the cognitive behavior of large language models (LLMs) in instructional dialogue. We introduce a symbolic scaffolding method paired with a short-term memory schema designed to promote adaptive, structured reasoning in Socratic tutoring. Using controlled ablation across five system variants, we evaluate model outputs via expert-designed rubrics covering scaffolding, responsiveness, symbolic reasoning, and conversational memory. We present preliminary results using an LLM-based evaluation framework aligned to a cognitively grounded rubric. This enables scalable, systematic comparisons across architectural variants in early-stage experimentation. The preliminary results show that our full system consistently outperforms baseline variants. Analysis reveals that removing memory or symbolic structure degrades key cognitive behaviors, including abstraction, adaptive probing, and conceptual continuity. These findings support a processing-level account in which prompt-level cognitive scaffolds can reliably shape emergent instructional strategies in LLMs.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844