Guided Model Merging for Hybrid Data Learning: Leveraging Centralized Data to Refine Decentralized Models

arXiv:2503.20138v2 Announce Type: replace-cross
Abstract: Current network training paradigms primarily focus on either centralized or decentralized data regimes. However, in practice, data availability often exhibits a hybrid nature, where both regimes coexist. This hybrid setting presents new opportunities for model training, as the two regimes offer complementary trade-offs: decentralized data is abundant but subject to heterogeneity and communication constraints, while centralized data, though limited in volume and potentially unrepresentative, enables better curation and high-throughput access. Despite its potential, effectively combining these paradigms remains challenging, and few frameworks are tailored to hybrid data regimes. To address this, we propose a novel framework that constructs a model atlas from decentralized models and leverages centralized data to refine a global model within this structured space. The refined model is then used to reinitialize the decentralized models. Our method synergizes federated learning (to exploit decentralized data) and model merging (to utilize centralized data), enabling effective training under hybrid data availability. Theoretically, we show that our approach achieves faster convergence than methods relying solely on decentralized data, due to variance reduction in the merging process. Extensive experiments demonstrate that our framework consistently outperforms purely centralized, purely decentralized, and existing hybrid-adaptable methods. Notably, our method remains robust even when the centralized and decentralized data domains differ or when decentralized data contains noise, significantly broadening its applicability.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844