arXiv:2510.23866v1 Announce Type: cross
Abstract: This work presents a physics-conditioned latent diffusion model tailored for dynamical downscaling of atmospheric data, with a focus on reconstructing high-resolution 2-m temperature fields. Building upon a pre-existing diffusion architecture and employing a residual formulation against a reference UNet, we integrate a partial differential equation (PDE) loss term into the model’s training objective. The PDE loss is computed in the full resolution (pixel) space by decoding the latent representation and is designed to enforce physical consistency through a finite-difference approximation of an effective advection-diffusion balance. Empirical observations indicate that conventional diffusion training already yields low PDE residuals, and we investigate how fine-tuning with this additional loss further regularizes the model and enhances the physical plausibility of the generated fields. The entirety of our codebase is available on Github, for future reference and development.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We

