arXiv:2404.11577v4 Announce Type: replace-cross
Abstract: Machine unlearning updates machine learning models to remove information from specific training samples, complying with data protection regulations that allow individuals to request the removal of their personal data. Despite the recent development of numerous unlearning algorithms, reliable evaluation of these algorithms remains an open research question. In this work, we focus on membership inference attack (MIA) based evaluation, one of the most common approaches for evaluating unlearning algorithms, and address various pitfalls of existing evaluation metrics lacking theoretical understanding and reliability. Specifically, by modeling the proposed evaluation process as a emphcryptographic game between unlearning algorithms and MIA adversaries, the naturally induced evaluation metric measures the data removal efficacy of unlearning algorithms and enjoys provable guarantees that existing evaluation metrics fail to satisfy. Furthermore, we propose a practical and efficient approximation of the induced evaluation metric and demonstrate its effectiveness through both theoretical analysis and empirical experiments. Overall, this work presents a novel and reliable approach to empirically evaluating unlearning algorithms, paving the way for the development of more effective unlearning techniques.
Uncovering Code Insights: Leveraging GitHub Artifacts for Deeper Code Understanding
arXiv:2511.03549v1 Announce Type: cross Abstract: Understanding the purpose of source code is a critical task in software maintenance, onboarding, and modernization. While large language models



