• Home
  • AI/ML & Advanced Analytics
  • A Sheaf-Theoretic and Topological Perspective on Complex Network Modeling and Attention Mechanisms in Graph Neural Models

arXiv:2601.21207v1 Announce Type: cross
Abstract: Combinatorial and topological structures, such as graphs, simplicial complexes, and cell complexes, form the foundation of geometric and topological deep learning (GDL and TDL) architectures. These models aggregate signals over such domains, integrate local features, and generate representations for diverse real-world applications. However, the distribution and diffusion behavior of GDL and TDL features during training remains an open and underexplored problem. Motivated by this gap, we introduce a cellular sheaf theoretic framework for modeling and analyzing the local consistency and harmonicity of node features and edge weights in graph-based architectures. By tracking local feature alignments and agreements through sheaf structures, the framework offers a topological perspective on feature diffusion and aggregation. Furthermore, a multiscale extension inspired by topological data analysis (TDA) is proposed to capture hierarchical feature interactions in graph models. This approach enables a joint characterization of GDL and TDL architectures based on their underlying geometric and topological structures and the learned signals defined on them, providing insights for future studies on conventional tasks such as node classification, substructure detection, and community detection.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844