FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Active Hydrodynamic Theory of Euchromatin and Heterochromatin

arXiv:2503.20964v3 Announce Type: replace-cross
Abstract: The genome contains genetic information essential for cell’s life. The genome’s spatial organization inside the cell nucleus is critical for its proper function including gene regulation. The two major genomic compartments — euchromatin and heterochromatin — contain largely transcriptionally active and silenced genes, respectively, and exhibit distinct dynamics. In this work, we present a hydrodynamic framework that describes the large-scale behavior of euchromatin and heterochromatin, and accounts for the interplay of mechanical forces, active processes, and nuclear confinement. Our model shows contractile stresses from cross-linking proteins lead to the formation of heterochromatin droplets via mechanically driven phase separation. These droplets grow, coalesce, and in nuclear confinement, wet the boundary. Active processes, such as gene transcription in euchromatin, introduce non-equilibrium fluctuations that drive long-range, coherent motions of chromatin as well as the nucleoplasm, and thus alter the genome’s spatial organization. These fluctuations also indirectly deform heterochromatin droplets, by continuously changing their shape. Taken together, our findings reveal how active forces, mechanical stresses and hydrodynamic flows contribute to the genome’s organization at large scales and provide a physical framework for understanding chromatin organization and dynamics in live cells.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844