arXiv:2511.04638v1 Announce Type: cross
Abstract: A common approach to mechanistic interpretability is to causally manipulate model representations via targeted interventions in order to understand what those representations encode. Here we ask whether such interventions create out-of-distribution (divergent) representations, and whether this raises concerns about how faithful their resulting explanations are to the target model in its natural state. First, we demonstrate empirically that common causal intervention techniques often do shift internal representations away from the natural distribution of the target model. Then, we provide a theoretical analysis of two classes of such divergences: `harmless’ divergences that occur in the null-space of the weights and from covariance within behavioral decision boundaries, and `pernicious’ divergences that activate hidden network pathways and cause dormant behavioral changes. Finally, in an effort to mitigate the pernicious cases, we modify the Counterfactual Latent (CL) loss from Grant (2025) that regularizes interventions to remain closer to the natural distributions, reducing the likelihood of harmful divergences while preserving the interpretive power of interventions. Together, these results highlight a path towards more reliable interpretability methods.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the


