The AI doomers feel undeterred

It’s a weird time to be an AI doomer. This small but influential community of researchers, scientists, and policy experts believes, in the simplest terms,

Amortized Bayesian Meta-Learning for Low-Rank Adaptation of Large Language Models

arXiv:2508.14285v2 Announce Type: replace-cross
Abstract: Fine-tuning large language models (LLMs) with low-rank adaptation (LoRA) is a cost-effective way to incorporate information from a specific dataset. However, it is often unclear how well the fine-tuned LLM will generalize, i.e., how well it will perform on unseen datasets. Methods have been proposed to improve generalization by optimizing in-context prompts, or by using meta-learning to fine-tune LLMs. However, these methods are expensive in memory and computation, requiring either long-context prompts or saving copies of parameters and using second-order gradient updates. To address these challenges, we propose Amortized Bayesian Meta-Learning for LoRA (ABMLL). This method builds on amortized Bayesian meta-learning for smaller models, adapting this approach to LLMs while maintaining its computational efficiency. We reframe task-specific and global parameters in the context of LoRA and use a new hyperparameter to balance reconstruction accuracy and the fidelity of task-specific parameters to the global ones. ABMLL provides effective generalization and scales to large models such as LLAMA3-8B. Furthermore, as a result of using a Bayesian framework, ABMLL provides improved uncertainty quantification. We test ABMLL on CrossFit and Unified-QA datasets and find that it outperforms existing methods on these benchmarks in terms of both accuracy and expected calibration error.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844