arXiv:2511.00340v1 Announce Type: new
Abstract: The rapid integration of large language models (LLMs) into high-stakes legal work has exposed a critical gap: no benchmark exists to systematically stress-test their reliability against the nuanced, adversarial, and often subtle flaws present in real-world contracts. To address this, we introduce CLAUSE, a first-of-its-kind benchmark designed to evaluate the fragility of an LLM’s legal reasoning. We study the capabilities of LLMs to detect and reason about fine-grained discrepancies by producing over 7500 real-world perturbed contracts from foundational datasets like CUAD and ContractNLI. Our novel, persona-driven pipeline generates 10 distinct anomaly categories, which are then validated against official statutes using a Retrieval-Augmented Generation (RAG) system to ensure legal fidelity. We use CLAUSE to evaluate leading LLMs’ ability to detect embedded legal flaws and explain their significance. Our analysis shows a key weakness: these models often miss subtle errors and struggle even more to justify them legally. Our work outlines a path to identify and correct such reasoning failures in legal AI.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We

