arXiv:2510.26136v1 Announce Type: new
Abstract: The inference cost of Large Language Models (LLMs) has become a critical factor in determining their commercial viability and widespread adoption. This paper introduces a quantitative “economics of inference” framework, treating the LLM inference process as a compute-driven intelligent production activity. We analyze its marginal cost, economies of scale, and quality of output under various performance configurations. Based on empirical data from WiNEval-3.0, we construct the first “LLM Inference Production Frontier,” revealing three principles: diminishing marginal cost, diminishing returns to scale, and an optimal cost-effectiveness zone. This paper not only provides an economic basis for model deployment decisions but also lays an empirical foundation for the future market-based pricing and optimization of AI inference resources.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We



