arXiv:2509.12991v2 Announce Type: replace-cross
Abstract: ECG foundation models are increasingly popular due to their adaptability across various tasks. However, their clinical applicability is often limited by performance gaps compared to task-specific models, even after pre-training on large ECG datasets and fine-tuning on target data. This limitation is likely due to the lack of an effective post-training strategy. In this paper, we propose a simple yet effective post-training approach to enhance ECG foundation models. We evaluate it on a publicly available Transformer-based foundation model. Experiments across multiple ECG tasks show that our method consistently outperforms baseline fine-tuning. On the PTB-XL benchmarks, it improves macro AUROC by 0.7%-8.9% and macro AUPRC by 23.3%-77.9%, also outperforming several recent state-of-the-art approaches, including task-specific and advanced architectures. Further analyses demonstrate improved training dynamics and data efficiency, with only 30% of the training data outperforming the baseline trained on the full dataset. Ablation studies highlight the importance of stochastic depth and preview linear probing. These findings underscore the potential of post-training strategies to improve ECG foundation models, and we hope this work will contribute to the continued development of foundation models in the ECG domain.
Inside the marketplace powering bespoke AI deepfakes of real women
Civitai—an online marketplace for buying and selling AI-generated content, backed by the venture capital firm Andreessen Horowitz—is letting users buy custom instruction files for generating

