FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Capability Ceilings in Autoregressive Language Models: Empirical Evidence from Knowledge-Intensive Tasks

arXiv:2510.21866v1 Announce Type: new
Abstract: We document empirical capability ceilings in decoder-only autoregressive language models across knowledge-intensive tasks. Systematic evaluation of OPT and Pythia model families (70M-30B parameters, spanning 240 times scaling) reveals that knowledge retrieval tasks show negligible accuracy improvement despite smooth loss reduction. On MMLU mathematics benchmarks, accuracy remains flat at 19-20% (below 25% random chance) across all scales while cross-entropy loss decreases by 31%. In contrast, procedural tasks like arithmetic show conventional scaling where both metrics improve together. Attention intervention experiments reveal high sensitivity to perturbation: swapping attention patterns between models causes catastrophic performance collapse (complete accuracy loss) rather than graceful degradation. These measurements have immediate engineering implications: for knowledge-intensive applications using OPT and Pythia architectures, parameter scaling beyond 1-2B offers minimal accuracy gains despite continued loss improvement. Our findings quantify capability-specific scaling failures in these model families to inform resource allocation decisions. Whether these patterns reflect fundamental constraints of decoder-only architectures or implementation-specific limitations remains an open question requiring investigation across diverse architectural approaches.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844