arXiv:2510.27655v1 Announce Type: cross
Abstract: Feature-attribution methods (e.g., SHAP, LIME) explain individual predictions but often miss higher-order structure: sets of features that act in concert. We propose Modules of Influence (MoI), a framework that (i) constructs a model explanation graph from per-instance attributions, (ii) applies community detection to find feature modules that jointly affect predictions, and (iii) quantifies how these modules relate to bias, redundancy, and causality patterns. Across synthetic and real datasets, MoI uncovers correlated feature groups, improves model debugging via module-level ablations, and localizes bias exposure to specific modules. We release stability and synergy metrics, a reference implementation, and evaluation protocols to benchmark module discovery in XAI.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and


