arXiv:2507.02912v3 Announce Type: replace-cross
Abstract: Industrial carbon emissions are a major driver of climate change, yet modeling these emissions is challenging due to multicollinearity among factors and complex interdependencies across sectors and time. We propose a novel graph-based deep learning framework DGL to analyze and forecast industrial CO_2 emissions, addressing high feature correlation and capturing industrial-temporal interdependencies. Unlike traditional regression or clustering methods, our approach leverages a Graph Neural Network (GNN) with attention mechanisms to model relationships between industries (or regions) and a temporal transformer to learn long-range patterns. We evaluate our framework on public global industry emissions dataset derived from EDGAR v8.0, spanning multiple countries and sectors. The proposed model achieves superior predictive performance – reducing error by over 15% compared to baseline deep models – while maintaining interpretability via attention weights and causal analysis. We believe that we are the first Graph-Temporal architecture that resolves multicollinearity by structurally encoding feature relationships, along with integration of causal inference to identify true drivers of emissions, improving transparency and fairness. We also stand a demonstration of policy relevance, showing how model insights can guide sector-specific decarbonization strategies aligned with sustainable development goals. Based on the above, we show high-emission “hotspots” and suggest equitable intervention plans, illustrating the potential of state-of-the-art AI graph learning to advance climate action, offering a powerful tool for policymakers and industry stakeholders to achieve carbon reduction targets.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the


