FeNN-DMA: A RISC-V SoC for SNN acceleration

arXiv:2511.00732v1 Announce Type: cross Abstract: Spiking Neural Networks (SNNs) are a promising, energy-efficient alternative to standard Artificial Neural Networks (ANNs) and are particularly well-suited to

Distribution Shift Alignment Helps LLMs Simulate Survey Response Distributions

arXiv:2510.21977v1 Announce Type: new
Abstract: Large language models (LLMs) offer a promising way to simulate human survey responses, potentially reducing the cost of large-scale data collection. However, existing zero-shot methods suffer from prompt sensitivity and low accuracy, while conventional fine-tuning approaches mostly fit the training set distributions and struggle to produce results more accurate than the training set itself, which deviates from the original goal of using LLMs to simulate survey responses. Building on this observation, we introduce Distribution Shift Alignment (DSA), a two-stage fine-tuning method that aligns both the output distributions and the distribution shifts across different backgrounds. By learning how these distributions change rather than fitting training data, DSA can provide results substantially closer to the true distribution than the training data. Empirically, DSA consistently outperforms other methods on five public survey datasets. We further conduct a comprehensive comparison covering accuracy, robustness, and data savings. DSA reduces the required real data by 53.48-69.12%, demonstrating its effectiveness and efficiency in survey simulation.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844