arXiv:2511.04286v1 Announce Type: cross
Abstract: Learning from human preferences is a cornerstone of aligning machine learning models with subjective human judgments. Yet, collecting such preference data is often costly and time-consuming, motivating the need for more efficient learning paradigms. Two established approaches offer complementary advantages: RLHF scales effectively to high-dimensional tasks such as LLM fine-tuning, while PBO achieves greater sample efficiency through active querying. We propose a hybrid framework that unifies RLHF’s scalability with PBO’s query efficiency by integrating an acquisition-driven module into the RLHF pipeline, thereby enabling active and sample-efficient preference gathering. We validate the proposed approach on two representative domains: (i) high-dimensional preference optimization and (ii) LLM fine-tuning. Experimental results demonstrate consistent improvements in both sample efficiency and overall performance across these tasks.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the


