arXiv:2508.13576v2 Announce Type: replace-cross
Abstract: The cochlear implant (CI) is a successful biomedical device that enables individuals with severe-to-profound hearing loss to perceive sound through electrical stimulation, yet listening in noise remains challenging. Recent deep learning advances offer promising potential for CI sound coding by integrating visual cues. In this study, an audio-visual speech enhancement (AVSE) module is integrated with the ElectrodeNet-CS (ECS) model to form the end-to-end CI system, AVSE-ECS. Simulations show that the AVSE-ECS system with joint training achieves high objective speech intelligibility and improves the signal-to-error ratio (SER) by 7.4666 dB compared to the advanced combination encoder (ACE) strategy. These findings underscore the potential of AVSE-based CI sound coding.
Inside the marketplace powering bespoke AI deepfakes of real women
Civitai—an online marketplace for buying and selling AI-generated content, backed by the venture capital firm Andreessen Horowitz—is letting users buy custom instruction files for generating


