arXiv:2510.25914v1 Announce Type: new
Abstract: FinOps (Finance + Operations) represents an operational framework and cultural practice which maximizes cloud business value through collaborative financial accountability across engineering, finance, and business teams. FinOps practitioners face a fundamental challenge: billing data arrives in heterogeneous formats, taxonomies, and metrics from multiple cloud providers and internal systems which eventually lead to synthesizing actionable insights, and making time-sensitive decisions. To address this challenge, we propose leveraging autonomous, goal-driven AI agents for FinOps automation. In this paper, we built a FinOps agent for a typical use-case for IT infrastructure and cost optimization. We built a system simulating a realistic end-to-end industry process starting with retrieving data from various sources to consolidating and analyzing the data to generate recommendations for optimization. We defined a set of metrics to evaluate our agent using several open-source and close-source language models and it shows that the agent was able to understand, plan, and execute tasks as well as an actual FinOps practitioner.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and


