arXiv:2510.02578v3 Announce Type: replace
Abstract: We present FLOWR:root, an equivariant flow-matching model for pocket-aware 3D ligand generation with joint binding affinity prediction and confidence estimation. The model supports de novo generation, pharmacophore-conditional sampling, fragment elaboration, and multi-endpoint affinity prediction (pIC50, pKi, pKd, pEC50). Training combines large-scale ligand libraries with mixed-fidelity protein-ligand complexes, followed by refinement on curated co-crystal datasets and parameter-efficient finetuning for project-specific adaptation. FLOWR:root achieves state-of-the-art performance in unconditional 3D molecule generation and pocket-conditional ligand design, producing geometrically realistic, low-strain structures. The integrated affinity prediction module demonstrates superior accuracy on the SPINDR test set and outperforms recent models on the Schrodinger FEP+/OpenFE benchmark with substantial speed advantages. As a foundation model, FLOWR:root requires finetuning on project-specific datasets to account for unseen structure-activity landscapes, yielding strong correlation with experimental data. Joint generation and affinity prediction enable inference-time scaling through importance sampling, steering molecular design toward higher-affinity compounds. Case studies validate this: selective CK2$alpha$ ligand generation against CLK3 shows significant correlation between predicted and quantum-mechanical binding energies, while ER$alpha$, TYK2 and BACE1 scaffold elaboration demonstrates strong agreement with QM calculations. By integrating structure-aware generation, affinity estimation, and property-guided sampling, FLOWR:root provides a comprehensive foundation for structure-based drug design spanning hit identification through lead optimization.
OptoLoop: An optogenetic tool to probe the functional role of genome organization
The genome folds inside the cell nucleus into hierarchical architectural features, such as chromatin loops and domains. If and how this genome organization influences the



