The AI doomers feel undeterred

It’s a weird time to be an AI doomer. This small but influential community of researchers, scientists, and policy experts believes, in the simplest terms,

Frequency Locking to Environmental Forcing Suppresses Oscillatory Extinction in Phage-Bacteria Interactions

arXiv:2512.08224v1 Announce Type: cross
Abstract: Bacteriophage-bacteria interactions are central to microbial ecology, influencing evolution, biogeochemical cycles, and pathogen behavior. Most theoretical models assume static environments and passive bacterial hosts, neglecting the joint effects of bacterial traits and environmental fluctuations on coexistence dynamics. This limitation hinders the prediction of microbial persistence in dynamic ecosystems such as soils and oceans.Using a minimal ordinary differential equation framework, we show that the bacterial growth rate and the phage adsorption rate collectively determine three possible ecological outcomes: phage extinction, stable coexistence, or oscillation-induced extinction. Specifically, we demonstrate that environmental fluctuations can suppress destructive oscillations through resonance, promoting coexistence where static models otherwise predict collapse. Counterintuitively, we find that lower bacterial growth rates are helpful in enhancing survival under high infection pressure, elucidating the observed post-infection growth reduction.Our studies reframe bacterial hosts as active builders of ecological dynamics and environmental variation as a potential stabilizing force. Our findings thus bridge a key theory-experiment gap and provide a foundational framework for predicting microbial responses to environmental stress, which might have potential implications for phage therapy, microbiome management, and climate-impacted community resilience.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844