arXiv:2510.23620v1 Announce Type: new
Abstract: Metastasis is the leading cause of cancer-related mortality, yet most predictive models rely on shallow architectures and neglect patient-specific regulatory mechanisms. Here, we integrate classical machine learning and deep learning to predict metastatic potential across multiple cancer types. Gene expression profiles from the Cancer Cell Line Encyclopedia were combined with a transcription factor-target prior from DoRothEA, focusing on nine metastasis-associated regulators. After selecting differential genes using the Kruskal-Wallis test, ElasticNet, Random Forest, and XGBoost models were trained for benchmarking. Personalized gene regulatory networks were then constructed using PANDA and LIONESS and analyzed through a graph attention neural network (GATv2) to learn topological and expression-based representations. While XGBoost achieved the highest AUROC (0.7051), the GNN captured non-linear regulatory dependencies at the patient level. These results demonstrate that combining traditional machine learning with graph-based deep learning enables a scalable and interpretable framework for metastasis risk prediction in precision oncology.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and

