arXiv:2601.20745v1 Announce Type: cross
Abstract: As large language models (LLMs) continue to scale, deployment is increasingly bottlenecked by the memory wall, motivating a shift toward extremely low-bit quantization. However, most quantization-aware training (QAT) methods apply hard rounding and the straight-through estimator (STE) from the beginning of the training, which prematurely discretizes the optimization landscape and induces persistent gradient mismatch between latent weights and quantized weights, hindering effective optimization of quantized models. To address this, we propose Hestia, a Hessian-guided differentiable QAT framework for extremely low-bit LLMs, which replaces the rigid step function with a temperature-controlled softmax relaxation to maintain gradient flow early in training while progressively hardening quantization. Furthermore, Hestia leverages a tensor-wise Hessian trace metric as a lightweight curvature signal to drive fine-grained temperature annealing, enabling sensitivity-aware discretization across the model. Evaluations on Llama-3.2 show that Hestia consistently outperforms existing ternary QAT baselines, yielding average zero-shot improvements of 5.39% and 4.34% for the 1B and 3B models. These results indicate that Hessian-guided relaxation effectively recovers representational capacity, establishing a more robust training path for 1.58-bit LLMs. The code is available at https://github.com/hestia2026/Hestia.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844