Holographic Transformers for Complex-Valued Signal Processing: Integrating Phase Interference into Self-Attention

arXiv:2509.19331v2 Announce Type: replace-cross
Abstract: Complex-valued signals encode both amplitude and phase, yet most deep models treat attention as real-valued correlation, overlooking interference effects. We introduce the Holographic Transformer, a physics-inspired architecture that incorporates wave interference principles into self-attention. Holographic attention modulates interactions by relative phase and coherently superimposes values, ensuring consistency between amplitude and phase. A dual-headed decoder simultaneously reconstructs the input and predicts task outputs, preventing phase collapse when losses prioritize magnitude over phase. We demonstrate that holographic attention implements a discrete interference operator and maintains phase consistency under linear mixing. Experiments on PolSAR image classification and wireless channel prediction show strong performance, achieving high classification accuracy and F1 scores, low regression error, and increased robustness to phase perturbations. These results highlight that enforcing physical consistency in attention leads to generalizable improvements in complex-valued learning and provides a unified, physics-based framework for coherent signal modeling. The code is available at https://github.com/EonHao/Holographic-Transformers.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844