arXiv:2510.20847v1 Announce Type: new
Abstract: The extent to which different neural or artificial neural networks (models) rely on equivalent representations to support similar tasks remains a central question in neuroscience and machine learning. Prior work has typically compared systems using a single representational similarity metric, yet each captures only one facet of representational structure. To address this, we leverage a suite of representational similarity metrics-each capturing a distinct facet of representational correspondence, such as geometry, unit-level tuning, or linear decodability-and assess brain region or model separability using multiple complementary measures. Metrics that preserve geometric or tuning structure (e.g., RSA, Soft Matching) yield stronger region-based discrimination, whereas more flexible mappings such as Linear Predictivity show weaker separation. These findings suggest that geometry and tuning encode brain-region- or model-family-specific signatures, while linearly decodable information tends to be more globally shared across regions or models. To integrate these complementary representational facets, we adapt Similarity Network Fusion (SNF), a framework originally developed for multi-omics data integration. SNF produces substantially sharper regional and model family-level separation than any single metric and yields robust composite similarity profiles. Moreover, clustering cortical regions using SNF-derived similarity scores reveals a clearer hierarchical organization that aligns closely with established anatomical and functional hierarchies of the visual cortex-surpassing the correspondence achieved by individual metrics.
The Hidden Power of Normalization: Exponential Capacity Control in Deep Neural Networks
arXiv:2511.00958v1 Announce Type: cross Abstract: Normalization methods are fundamental components of modern deep neural networks (DNNs). Empirically, they are known to stabilize optimization dynamics and



