arXiv:2510.23639v2 Announce Type: replace-cross
Abstract: This paper introduces an innovative Electronic Health Record (EHR) foundation model that integrates Polygenic Risk Scores (PRS) as a foundational data modality, moving beyond traditional EHR-only approaches to build more holistic health profiles. Leveraging the extensive and diverse data from the All of Us (AoU) Research Program, this multimodal framework aims to learn complex relationships between clinical data and genetic predispositions. The methodology extends advancements in generative AI to the EHR foundation model space, enhancing predictive capabilities and interpretability. Evaluation on AoU data demonstrates the model’s predictive value for the onset of various conditions, particularly Type 2 Diabetes (T2D), and illustrates the interplay between PRS and EHR data. The work also explores transfer learning for custom classification tasks, showcasing the architecture’s versatility and efficiency. This approach is pivotal for unlocking new insights into disease prediction, proactive health management, risk stratification, and personalized treatment strategies, laying the groundwork for more personalized, equitable, and actionable real-world evidence generation in healthcare.
Fast Approximation Algorithm for Non-Monotone DR-submodular Maximization under Size Constraint
arXiv:2511.02254v1 Announce Type: cross Abstract: This work studies the non-monotone DR-submodular Maximization over a ground set of $n$ subject to a size constraint $k$. We


