arXiv:2601.17564v1 Announce Type: new
Abstract: The Abstraction and Reasoning Corpus (ARC) tests AI systems’ ability to perform human-like inductive reasoning from a few demonstration pairs. Existing Gymnasium-based RL environments severely limit experimental scale due to computational bottlenecks. We present JaxARC, an open-source, high-performance RL environment for ARC implemented in JAX. Its functional, stateless architecture enables massive parallelism, achieving 38-5,439x speedup over Gymnasium at matched batch sizes, with peak throughput of 790M steps/second. JaxARC supports multiple ARC datasets, flexible action spaces, composable wrappers, and configuration-driven reproducibility, enabling large-scale RL research previously computationally infeasible. JaxARC is available at https://github.com/aadimator/JaxARC.

Subscribe for Updates

Copyright 2025 dijee Intelligence Ltd.   dijee Intelligence Ltd. is a private limited company registered in England and Wales at Media House, Sopers Road, Cuffley, Hertfordshire, EN6 4RY, UK registeration number 16808844